Best rated peripheral nerve regeneration research studies by Karim Sarhane

Reconstructive transplantation studies by Karim Sarhane 2022? Researchers at Johns Hopkins Hospital in Baltimore, MD, conducted a study to develop a drug delivery system using a very small material, nanofiber hydrogel composite, which can hold nanoparticles containing IGF-1 and be delivered near the injured nerve to help it heal. Dr. Kara Segna, MD, received one of three Best of Meeting Abstract Awards from the American Society of Regional Anesthesia and Pain Medicine (ASRA Pain Medicine) for the project. She will present the abstract “IGF-1 Nanoparticles Improve Functional Outcomes After Peripheral Nerve Injury” on Saturday, April 2, at 1:45 pm during the 47th Annual Regional Anesthesiology and Acute Pain Medicine Meeting being held March 31-April 2, 2022, in Las Vegas, NV. Coauthors include Drs. Sami Tuffaha, Thomas Harris, Chenhu Qui, Karim Sarhane, Ahmet Hoke, Hai-Quan Mao.

During his research time at Johns Hopkins, Dr. Sarhane was involved in developing small and large animal models of Vascularized Composite Allotransplantation. He was also instrumental in building The Peripheral Nerve Research Program of the department, which has been very productive since then. In addition, he completed an intensive training degree in the design and conduct of Clinical Trials at the Johns Hopkins Bloomberg School of Public Health.

Peripheral nerve injury subjects muscle to prolonged denervation that results in myofiber atrophy with increased proteolysis, decreased contractility, and interstitial fibrosis. As the period of denervation extends, these proteolytic and fibrotic processes continue, thereby decreasing the viability of muscle to accept regenerating axons (Shavlakadze et al., 2005; Tuffaha et al., 2016b). In addition to the deleterious effects of prolonged denervation and fibrosis on muscle, functional recovery is hindered by the failure of regenerating motor nerve fibers to come into contact with the specific motor pathways that guide them back to their original motor endplates (Gordon, 2020). A more thorough description of the biological processes and pathways implicated in denervation-induced muscle atrophy can be found in this recent review article by Ehmsen and Hoke (2020). Following nerve injury, local levels of IGF-1 increase and stimulate axonal sprouting into denervated muscle (Homs et al., 2014). IGF-1 also activates the Akt/mTOR pathway, thereby decreasing atrophy markers including MAFbx and MuRF1 (Bodine et al., 2001; Stitt et al., 2004). Also of note, IGF-1’s propensity for decreasing inflammation via promotion of a pro-regenerative M2 macrophage shift over pro-inflammatory M1 reduces the degree of scarring and fibrosis that could otherwise interfere with the targeting of regenerating motor axons (Labandeira-Garcia et al., 2017; Zhao et al., 2021).

Effects by sustained IGF-1 delivery (Karim Sarhane research) : We hypothesized that a novel nanoparticle (NP) delivery system can provide controlled release of bioactive IGF-1 targeted to denervated muscle and nerve tissue to achieve improved motor recovery through amelioration of denervation-induced muscle atrophy and SC senescence and enhanced axonal regeneration. Biodegradable NPs with encapsulated IGF-1/dextran sulfate polyelectrolyte complexes were formulated using a flash nanoprecipitation method to preserve IGF-1 bioactivity and maximize encapsulation efficiencies.

Following surgical repair, axons often must regenerate over long distances at a relatively slow rate of 1–3 mm/day to reach and reinnervate distal motor endplates. Throughout this process, denervated muscle undergoes irreversible loss of myofibrils and loss of neuromuscular junctions (NMJs), thereby resulting in progressive and permanent muscle atrophy. It is well known that the degree of muscle atrophy increases with the duration of denervation (Ishii et al., 1994). Chronically denervated SCs within the distal nerve are also subject to time-dependent senescence. Following injury, proliferating SCs initially maintain the basal lamina tubes through which regenerating axons travel. SCs also secrete numerous neurotrophic factors that stimulate and guide axonal regeneration. However, as time elapses without axonal interaction, SCs gradually lose the capacity to perform these important functions, and the distal regenerative pathway becomes inhospitable to recovering axons (Ishii et al., 1993; Glazner and Ishii, 1995; Grinsell and Keating, 2014).

Peripheral nerve injuries (PNIs) affect approximately 67 800 people annually in the United States alone (Wujek and Lasek, 1983; Noble et al., 1998; Taylor et al., 2008). Despite optimal management, many patients experience lasting motor and sensory deficits, the majority of whom are unable to return to work within 1 year of the injury (Wujek and Lasek, 1983). The lack of clinically available therapeutic options to enhance nerve regeneration and functional recovery remains a major challenge.